Computer Science (Episode 27)

Episode 27 (Security VI: Contraption)

Using WireShark

Packet Analysis I

Tanuki, the next step is packet analysis using WireShark.

N The subject for analysis is the chat program created in episodes 6
o= and 7. We will use Wireshark to analyze the packets during
ww communication between the chat in the server configuration and

the chat in the client configuration.
The ASCII code will also be needed, so | will leave it as presented

again.

X 1016 X 1016| X 10163 1016||3X 1016|[3X 10 16||3X 10 16| X 10 16
F O F EE|FHEE|FEE|FEE|FEE|F E E|| F OE E
NULO 00| DLE 16 10||SP 3220([0 48 30| @ 64 40|[P 8050 96 60|lp 11270
SOH 1 01(DC1 1711||! 3321|l1 4931||A 6541||Q 8151|la 97 61||q 11371
STX 2 02(DC2 1812||" 34222 5032||B 6642||R 8252|b 98 62| r 114 72
ETX 3 03| DC3 1913||# 35233 5133||C 6743||S 8353|c 99 63|s 11573
EOT 4 04| DC4 2014|$ 36244 5234||D 6844||T 84 54| d 100 64|t 116 74
ENQ5 05| NAK2115|{|% 37255 5335||E 6945||U 8555||e 10165(|u 117 75
ACK 6 06||SYN 2216|[& 3826|/6 5436|F 7046|V 8656|f 10266|v 118 76
BEL 7 07| ETB 23 17|' 3927(|7 5537||G 7147||W 8757|g 10367||w 119 77
BS 8 08| CAN 24 18|(4028||8 56 38||H 7248|X 8858|h 10468|x 12078
HT 9 09| EM 2519|) 4129(9 57391 7349||Y 8959|i 10569y 12179
LF* 100a|SUB 26 1la|* 422a 58 3a||ld 744a|lZ 905al|j 1066alz 122 7a
VT 110b||ESC 27 1b|[+ 432b|l; 593b||K 754b||[915b|k 107 6b||! 123 7b
FF* 120c [|FS 281c||, 442c|[< 603c| L 764c| ¥ 925c|l 1086¢c || 124 Tc
CR 130d||GS 291d 452d||= 61 3d||M 77 4d||] 93 5d| m 109 6d||! 125 7d
SO 140e||RS 301e 46 2e ||> 62 3e|N 784e||” 945e|n 110 6e|~ 126 7e
SI 150f ||[US 311f|/ 472f||? 633f ||O 794f|[_ 955f ||o 111 6f ||[DEL 127 7f

Jsr0e.Ry)

[ew|osp

[ewioapexay

From the IT Dictionary

202

into packets and sent. Here's a refresher.

You have studied tcpdump, so you know that when

data flows over a communication line, it is divided

A packet is made up of data, a header in the upper
application layer (e.g., HTTP), a header in the
transport layer (e.g., TCP), a header in the network

layer (e.g., IP), and a header in the individual

network layer (e.g., Ethernet).

In the figure, the following is shown.

<
<

aspect of a packet flowing through a packet

Ethernet header | IP header | TCP header Part of data FCS
14 bytes 20 bytes 20 bytes 4 bytes
(UDP : 8 bytes) trailer

¥ FCS (trailer (vehicle)): Checks to see if packets were not corrupted during transmission.

When packets flow from PC (A) to PC (B), capturing

those packets is called packet capture, right? Also,

looking inside the captured packets is called packet

monitoring. Needless to say, seeing and analyzing the

actual packets flowing through the system is more

useful than learning from a book. But if you don't learn

how to operate and view the packet monitoring, it's like

a cat with a panda!

As I said before, WireShark is installed on "kali Linux",

S0 you can use it right away.

What if WireShark is not installed on anything other than “kali
Linux”? For example, what if | want to use it on CentOS7 which |
have built?

203

It is possible to install on CentOS7, but it is
quite a difficult task. It would be faster to
install "kali Linux", but just in case, here are

the steps to install it on CentOS7.
w

[Installing Wireshark]

® First things first: Preparation
$su—root #become root
mkdir tool # Create a directory tool as root for storage

@ Next, you need Openssl
Make sure Openssl is installed on CentOS.
openss| version

If installed, do the following just in case
yum clean all
yum list updates
yum update openssl|

(If you are installing Openssl anew)
: Dependency Installation
yum install -y zlib-devel perl-core make gcc

Download openssl-1.1.1 source

curl https://www. openss|.org/source/openss|—-1.1.1.tar. gz
-0 /usr/local/src/openss|-1.1.1.tar. gz

Installing openssl-1.1.1

cd /usr/local/src

tar xvzf openssl-1.1.1.tar.gz

openssl-1.1.1/

. /config —prefix=/usr/local/openss|-1.1.1 shared zlib
make depend

make

make test

make install

Installation Confirmation

Is -1 /usr/local/openss|-1.1.1

operation check

/usr/local/openss|-1.1.1/bin/openss| ciphers -v TLSv1.3
Return to Root's current directory.

#cd ~

204

®Whether Openssl is already installed or a new installation, there are
common tasks that must be performed.

yum install openssl-devel

yum install libgerypt-devel

@ python3 is required
yum install python3

® cmake is required
Download Site
https://cmake.org/download/
The site displays the following

Platform

Unix/Linux Source (has \n line feeds)

Windows Source (has \r\n line feeds)
Binary distributions:

/

Save the file as /root/tool/cmake-3.16.3.tar.gz

cd tool

defrosting

tar xvfz . /cmake-3. 15. 3. tar. gz
Go to the unzipped directory

cd . /cmake-3.15.3

Install required packages

yum install -y gcc gcc—c++
Create makefile in bootstrap

. /bootstrap

make & make install

make

make install

confirmation

cmake —version

Why is cmake needed to install WireShark? >

205

w

cmake is necessary.

® Installing WireShark
Download Site

https://www.wireshark.org/download.html

/\
WIRESHARK

Download Wireshark

The current stable release of Wireshark is 3.2.1.

Windows Installer (64-bit)

& Windows Installer (32-bit)
Windows PortableApps® (32-bit)
macOS 10.12 and later Intel 64-bit.dmg

=
Save the file as /root/tool/wireshark-3.2.1.tar.xz

Since WireShark is obtained from a source file, it
must be built (including compilation). For this,

Now it's time to download and install WireShark.

cd tool

mkdir

byacc

defrosting
tar xJfv . /wireshark-3.0.5. tar. xz

Create a directory for build and enter

bui ld

cd build
Install required packages
yum install -y gcc goc—c++ glib2-devel |ibgcrypt-devel flex-devel
| ibpcap-devel qtb-qtbase-devel qt5-linguist qtb-gtmultimedia
-devel gqtb-qtsvg-devel
Execution of cmake

cmake ../wireshark-3.0.5
make & install
make

make install

confirmation

tshark —version

If TShark (Wireshark) 3.0.5 is displayed, you are done.

206

Now that | can use the WireShark tool, I'll try to do some packet
analysis from the web server, as well as how to operate it. But I'll have
to start WireShark with administrator privileges (root) as shown below
to get the complete packets for analysis.

Clicking on the WireShark icon won’t give me administrator privileges!

|5 B e S5 04
2710 BREE BE TR ~NIVT
[Sudé‘j”;al i Password :

11:L1:37.555147 [GUI WARMING] — QStar

¢ '/tmp/runtime-root’

DLV = =0y FO=0TFF
71IE) REE) TRV BEG) FvIiFv(C 58A) #HH(S) WME(y
@ mi X G] =

7145 ... <Ctrl-/> ZiEA

¥

WiresharkN L5 %

*vIFv
o7 WIEHR: (A|FrTFv 74T .. BAN

etho

any

Loopback: lo
bluetooth-monitor

P
/Mﬂx,ﬁ \
| can read it! | see, you start WireShark after it is Rooted at the terminal.
So eth0 is the device name of the NIC. That’s what you specify. It looks
like the packet has already arrived. But it seems to be difficult if | don’t
get used to the operation.

!

Kitsune, I will explain the necessary operations for packet
analysis, but you should study the various operations of
WireShark by yourself by referring to the Internet or books.

As I have said before, the purpose of this site is not to teach you
how to use the tools and applications.

Roger, if you have the ability to read a book, you can understand how to operate it. >

In order to analyze packets using WireShark, it is better to use a
demo model for easy-to-understand testing, where the contents of
the transmission and reception are known in advance. So, we will
use the chat programs created in episodes 6 and 7. Using the server
chat program and the client chat program is the best choice since
the content of the transmission is known in advance and they are
intercommunicating with each other.

First, let's analyze the packets using the chat program. The chat
program is running on a single PC.

[Execution state of the chat program for packet analysis.]

client process
IP: 192.168.0.31

Server process
1P: 192.168.0.31

[~1$ Jectest [~]$ /sctest
wait Go ahead!
Your turn.:
Your turn.: bbbbbb Waiting!
Waiting! bbbbbb
cecece Your turn.: cccce
Your turn.: ddddd Waiting!
Waiting! ddddd
quit Your turn.: quit
Your turn.: quit Waiting!
Waiting! quit

The packet analysis by WireShark is shown below.
It is important to understand the meaning of the "a,"
"b," and "c¢" parts. If you can't do that, hacking is a
dream come true. Please try your best.

[Basic Packet Analysis with Wireshark]

|~ PIUT—Y3Y BF Wireshark 8 A BmBw0:0 |

capture3 -
JPILF) #WEE) FE(V) BEG) FrIFv(C) WA MEHS) B|E(y) JEBRW) Y-IU(T) AILTH)
7 A\ P e o 5 4 2 \ = =

A m 3@ B B Q¢ » e kASE 8 8 @ E

R[EFD L5 .. <Curl-/> &8 =

No. Time Source Destination Protocol Length |Info
1 0.0000000.. 192.168.0.31 .168.0. 72 50000 — 54896 [PSH,
2 0.0000940.. 192.168.0.31 192.168.0.31 TCP 66 54896 —~ 50000 [ACK]
3 8.1746709.. 192.168.0.31 192.168.0.31 TCP 73 54896 — 50000 [PSH,
4 8.1747622.. 192.168.0.31 a 192.168.0.31 TCP 66 50000 —~ 54896 [ACK] |
5 14.294768.. 192.168.0.31 192.168.0.31 TCP 72 50000 —~ 54896 [PSH.

» Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00_00:00:00 (00:00:00:00:00:00)
» Internet Protocol Version 4, Src: 192.168.0.31, Dst: 192.168.0.31 b
» Transmission Control Protocol, Src Port: 50000, Dst Port: 54896, Seq: 1, Ack: 1, Len: 6

[BData (6 bytes)

) 00 00 00 00 OO 00 00 PO 06O 0O OO 00 08 00 45 00 E

10 00 3a f5 63 40 00 40 06 c3 cb cO a8 00 1f cO a8 1-c@-@
0260 00 1f c3 50 d6 70 46 bf d2 35 c2 1f 75 2a 80 18 P pF 5--u*
O3 01 56 81 bb 00 60 01 01 08 Ga 00 19 75 Ga 00 19 \ u C
o040 27 56 Wcoaaa |

The above is divided into three parts: [al, [b], and [c].

[a] : One line represents one packet.
Order in which packets are sent:Elapsed time (initially 0):Sending IP Address receiving IP address

(Server process) (Client process)

Destination
192.168.0.31

192.168.0.31

No. Time Source
1 0.0000000., 192.168.0.31

2 0.0000940.. 192.168.0.31

Protocol used: Frame length (bytes): Sending port (50000) to receiving port (54896)

Protocol Length | Info Communication Control Flags
TAETEEEESGVEEETE | PSH (push): Prepare to send
TCP 66 54896 — 50000 [ACK]| ACK: Response confirmation

[b]: Contents of a single packet

(

» Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:60), Dst: 00:00:00_60:00:00 (OO:OO:OI
» Internet Protocol Version 4, Src: 192.168.0.31, Dst: 192.168.0.31

— » Transmission Control Protocol, Src Port: 50000, Dst Port: 54896, Seq: 1, Ack: 1, Len: 6
RData (6 bytes)

209

From top to bottom.
*Ethernet header
*IPv4 header
*TCP header
- Order of transmitted data. The entire packet (Ethernet frame) is 72 bytes.

[c]:A specific hexadecimal and ASCII representation of the contents of a single packet

00 OO OO0 6O OO AP OO PO 0O OO OO 0O 08 |45 00
00 3a f5 63 40 60 40 p6 c3 cb c® a8 00 1f'cO a8
00 1f|c3 50 g6 70 46/bf d2 35 c2 1f 75 2a 80 18
01 56 81 bb/00 00|64 1 08 Pa 0O 19 F5 Ga 0O 19
CLEIRNPY AT [61 o1 61 61 61 0a

_

D »
Ethernet header

14 byte 20 byte 20 byte 4X 3 byte 6 byte

Tanuki, you can't learn analysis just by looking at
what is displayed. I will give you the following

exercises to try. Practice is an important part of

learning. However, repeating the same thing over

and over again to avoid mistakes is a waste of

time. So studying for the exam is doing a waste of

time. It makes sense if you want to become a

bureaucrat who can blame mistakes. However, it

1s important to practice a few times not to prevent

mistakes, but to deepen understanding. If you

deny this, you're not learning.

| understand. 've always wanted to try it. But I'd also like to
check the answers, so please provide me with the answers.

210

[Exercise 1] Write the corresponding hexadecimal number from [c] in the following header.
Ethernet header (1 4byte)

Destination MAC address (6 byte)

Sender MAC address (6 byte) Type (2 byte)

IP header (2 Obyte)

version (4) | header length (4) | DSCP(6) | ECN (2) packet length (16)
identifier (16) 0(1) | F(1) | M) | fragment offset (13)
live time (8) protocol number (8) header checksum (16)

starting IP address 192.168.0.31(32 t" y})

end IP address 192.168.0.31(32 t" »})

TCP header (2 Obyte)

starting port number 50000(16 bit)

endpoint port number 54896(16 bit)

sequence number (32 bit)

acknowledgment number (32 bit)

data offset (4) | reserved bit (3) | control flag (9) window size (16)
checksum (16 bit) urgent pointer (16 bit)
TCP option (1 2byte)
option
DATA (6 byte)
a a a a a nl (LF) new line

211

[Answers to Exercise 1]
Ethernet header (1 4byte)

Destination MAC address (6 byte)

Sender MAC address (6 byte)

Type (2 byte)

00 00 00 00 00 00

00 00 00 00 00 00

08 00

IP header (2 Obyte)
header length (4)
5
identifier (16)
F5 63

DSCP(6)
0

ECN (2)
0

packet length (16)
00 3a
fragment offset (13)
0 00
header checksum (16)
c3chb

version (4)

4

F(1)
4

o) M(1)

protocol number (8)
06
starting IP address 192.168.0.31(32 t" y})
C0 a8 00 1f
end IP address 192.168.0.31(32 t” y})
C0 a8 00 1f

live time (8)

40

TCP header (2 Obyte)
starting port number 50000(16 bit)
C3 50

endpoint port number 54896(16 bit)
D6 70

sequence number (32 bit)

46 bf d2 35

acknowledgment number (32 bit)
C2 1f 75 2a
control flag (9)
8

window size (16)

01 56

reserved bit (3)
0 1
checksum (16 bit)

81 bb

data offset (4)
8

urgent pointer (16 bit)
00 00

TCP option (1 2byte)

option

01 01 08 0a 00 19 75 0a 00 19 27 56

DATA (6 byte)

nl (LF) new line
Oa

a

61

61 61 61 61

212

[Detailed explanations for packet analysis.]

Ethernet Header Terms
Type: If the upper layer is IP, 0x0800. For ARP (Address Resolution Protocol: MAC address query from
broadcast address such as ping, dns, nslookup, etc.), 0x0806.
IP Header Terms
Version: 4 for IPv4.
Header length: 4 byte units, so 4 x ? = 20 (bytes) from ? = 5, which is 5.
DSCP. ECN : Indicates the state of packet congestion on the transmission line.
Packet Length: The length (in bytes) of an IP packet. The following calculation formula is used.
Packet length = Length of entire packet (72 bytes) — Ethernet header (14 bytes) = 58 = x003a
ldentifier: Increase by | for each packet sent out.
Flags: O (unused: 0), F (divisible: 0, not divisible: 1), M (last fragment (not fragmented): 0, fragment
in progress: 1)
Fragment Offset: Fragmentation (packet splitting) occurs when a single IP packet exceeds 1500
bytes. Indicates where the fragmented data will be in the original packet; 0x4000
indicates that fragmentation is not possible and no fragmentation has occurred.

Survival Period: Indicates the number of routers an IP packet can pass through. Each time it passes
through a router, the number is decreased by |.

Protocol number: Indicates the upper protocol: 6 for TCP, 17 for UDP, | for ICMP, and 4 for IP.

Header checksum: guarantees that the IP header is not corrupted. 1’s complement of the IP header.

TCP Header Terms

Sequence number: Order control, restoring the sent TCP packets in the correct order.

Acknowledgement number: Sequence number + data size received

Data offset: TCP header length (5 for 20 bytes). In this case, 32 bytes including the TCP option, so 8

is entered as 32,/4.

Reserved bits: 3 bits reserved for future expansion. Currently unused and set to 0.

Control flags: | —bit flags (9 bits in total) for connection—related control (NS, CWR, ECE, URG, ACK,
PSH, RST, SYN, FIN).

Window size: Notifies the receiver of the size of the data to be sent and prepares the receive buffer.
In this case, 0x0156 is used to notify the transmission of 342 (decimal) bytes of data.

Checksum: Ensures that TCP packets are not corrupted.

Urgent pointer: Indicates the location and number of bytes of data that must be processed urgently.

% Connectionless UDP does not include the sequence number, acknowledgment number, or control flags
required for a connection.

213

Kitsune, the packets sent and received are flying in
and out at a dizzying rate, is there any way to save
them to a file and analyze them carefully?

Yes, there is.
If you execute the following command with Root

.
- privileges, the file (cap1) will be saved. However, when
you open the capl file, you must start WireShark and

w open it as a file for WireShark. At this time, you do not

need to have Root privileges to open the file.

I#tshark -i eth0 —w /home/capl

(Note) The capl file created in /home,/ does not have access rights, so grant access
rights as follows.
I# chmod 777 /home/capl

| understand that [Detailed Explanation for Packet Analysis] is an
important term, but it’s not easy to understand. Do | have to
learn this?

‘. You don't have to memorize it, but I'd like
s you to understand how it works as you do
89 s your practice assignments.

214

Next, I should try to analyze the packets from the web server.

that.

distinguishable.

Linux" that is capturing the packets is 192.168.0.29.

e

sample

O

<« Kali Docs

&)

—— C @

g= Kali Tools

ikeriri.ne.jp

Kali Linux N Kali Forums

There is a site that provides a demo page for analysis, so let's use
The site is not using OpenSSL, so it is accessible via http,
not https, and the HTTP header and data portions are clearly
The following is the result of accessing this site
and capturing the data with WireShark. The IP address of
"www.ikeriri.ne.jp" is 163.44.9.71. The IP address of the "kali

o Kali NetHu

homepage
£ *ethO
J71JUE) WEE) TRV BHG) FvrIF+(C) Hn#HA) HIHES) WEY BHRW Y-)ILT) AITH)
> 7z = S b & = B 2 B ==
Al mMERG QeE2EF 55 QAQQE
| M [tcp.port == 80 X
No. Time Source Destination Protocol Lengtt Info
1239 30.271625383 192.168.0.29 163.44.9.71 HTTP 431 GET /sample.html HTTP/1.1
1240 30.279371012 163.44.9.71 192.168.0.29 TCP 66 80 — 49148 [ACK] Seg=1 Ack=366
4 1241 30.288045700 163.44.9.71 192.168.0.29 HTTP 356 HTTP/1.1 200 OK (text/html)
1242 30.288077748 192.168.0.29 163.44.9.71 TCP 66 49148 — 80 [ACK] Seq=366 Ack=29
; 1263 33 171508700 Ot ol e HITP 431 GET /sample.html HTTP/1.1
i 1264 33.178852769 163.44.9.71 192.168.0.29 HTTP ocb HTTP/1.1 200 OK (text/html)
+ o= 220158028 102 .168.0.29 163.44.9.71 maal= 66 49148 —~ 80 [ACK] Seq=731 Ack=58|
1266 36.296654678 163.44.9.71 192.168.0.29 TCP 66 80 — 49148 [FIN, ACK] Seq=580 A
y SN
» Trgnsmission Control Protocol, Src Port: 80, Dst Port: 49148, Seq: 291, Ack: 731, Len: 289

» Hypertext Transfer Protocol
Line-based text data: text/html (9

<!doctype html>\n
<html>\n

<head>\n
<title>sample</title>\n
</head>\n

<body>\n
<h1>homepage</hi>\n
</body>\n

65
20

6T
74

ve - -Cont
. text/h
rset=UTF
doctype
tml>-<he
le>sampl
>:</hcau 2 spodv>
-<ql>hom epage</’|
u y--</htm

ent-Type
tml; cha
<!

(O 7 Line-based text data (data-text-lines), 101 /{1 F

Ny F#1: 1268 - ®/iR: 23 (1.8%) - R3E: 0(0.0%)

JazzA)

215

Tanuki, as [Exercise 2], start wireshark and also start a
browser. Access the "http://www.ikeriri.ne.jp/sample.html" site
from your PC. Extract the first and last lines of the http header
section from (b) of wireshark at that time.If you are asked to
look at part () and count the number of bytes in the http
header, will you be able to practice and answer the question?

[Answers to Exercise 2]

First line : GET / HTTP/1.1
Last line : Connection: Keep-Alive
Bytes: Count them yourself!

Let's continue. Start wireshark and a browser as "Exercise 3".
Extract from (b) the line that borders the http header part and
the data part when the data 1s sent from the
"http://www.ikeriri.ne.jp/sample.html" site to the PC.

Also, count the number of bytes in the http header section in

(¢). If you were asked to do this, would you be able to answer
the question?

[Answers to Exercise 3]

boundary line : Content-Type: text/html

or blank (¥r¥n: carriage return/line feed)
Bytes: Count them yourself!

Now, when I capture https using WireShark, I see OCSP
protocol packets. What is OCSP? It is a packet that queries
an external OCSP responder to see if the digital certificate
sent by the site you are accessing is correct. It is shown in

the next figure.
OCSP responder
A
You're right! Is the serial number on the site correct?
A\ 4 .
. sight
CentOS7 Server certificate

. www.aaa.bbbb
browser [(sertatmumber)—

sent from site

216

So [exercise 4].
Launch WireShark, then launch your browser and
visit the "https://www.yahoo.co.jp" site.

o Answer the encryption name used in the OCSP
protocol hash algorithm displayed at that time, the
number of bytes of the issuerNameHash (issuer
name), the number of bytes of the issuerKeyHash

(issuer's public key) and the serial number.

[Answers to Exercise 4] OCSP Protocol

Hash algorithm : SHA—1
issuerNameHash(Publisher Name) : 20 byte
issuerKeyHash(Public key of the issuer) : 20 byte
serial number : 16 byte

Next is the UDP protocol.

-
- Capturing the DNS protocol using WireShark shows that
the UDP protocol is used.
W b So [exercise 5].

Looking at the displayed UDP header, can you fill in the
following table with the header contents in hexadecimal?

UDP header
Starting port number(2byte) Endpoint port number(2byte)
Packet length (2byte) Checksum (2byte)

[Answers to Exercise 5] UDP header

Starting port number (2byte) Endpoint port number (2 byte)
A47d 0035 (53:DNS Server)
Packet length (2byte) Checksum (2 byte)
00 2b (43 byte) 60 8

217

[Exercise 6] and it's the last one.

. . Launch WireShark (specify DNS protocol), then launch
your browser and read the following flags from the DNS
W W header that appears when you access the

"https://www.yahoo.co.jp" site .

First, how many bytes are in the DNS header?

One thing to note, however.

There are two types of DNS headers, one in the request
packet and the other in the response packet. Both have the
same format shown in the table below, but the values are
different.

[Requests.]

I D (16bit)

Expressed in hexadecimal :
QR(1) | Opcode(4) AAQ1) | TCQ) |RD(1) |RA() |Z(1) |AD(1) |CD(1) | RCODE(4)
binary digits :

[Response.]

ID (16bit)

Expressed in hexadecimal :
QR(1) | Opcode(4) AA(Q1) | TC(1) |RD(1) |RA(1) |Z(1) |AD() | CD(1) | RCODE(4)
binary digits :

[Answers to Exercise 6] DNS Header

[Requests.]
ID (16 bit)
Expressed in hexadecimal : 5d 30
QR(1) | Opcode(4) AAQ1) | TC(1) |RD() |RA() |Z(1) |AD(1) |CD(1) | RCODE(4)
0 binary : 0000 0 0 1 0 0 0 0 0000
01 00 (hexadecimal)
[Response.]
ID (16 bit)
Expressed in hexadecimal : 5d 30
QR(1) | Opcode(4) AAQ1) | TC(1) |RD() |RA() |Z(1) |AD(1) |CD(1) | RCODE(4)
1 binary : 0000 0 0 1 1 0 0 0 0000

81 80 (hexadecimal)

218

Finally, an encore to the exercise.
Consider what can be read from the above table from
the bit sequence of flags, divided into [request] and
[response].

w

[Answers to Encore for Practice] DNS Header

[request] : QR=0 indicates a query.Opcode=0 indicates a normal query; RD=1
indicates a full-service resolver.
[response] : QR=1, response. From Opcode=0, normal query. From RD=1, full
service resolver. From RA=1, it is clear that name resolution is

possible.

I'll give you a detailed supplementary explanation
of DNS headers, see if you need it.

W W

[Supplemental DNS header description.]
The DNS header (application layer) is shown in the table below.
ID (16 bit)

QR(1) | Opcode(4) | AA(D) | TC(1) | RD(1) | RA(1) | Z(1) | AD(1) | CD(1) | RCODE(4)
QDCOUNT(16 bit)
ANCOUNT(16 bit)
NSCOUNT(16 bit)
ARCOUNT(16 bit)

ID: Specified at the time of query (inquiry) and copied at the time of response (reply).

QR:Inquiry O, response 1.
Opcode:Normal query 0, Notify is 4, and Update is 5.

RD:Name resolution. Query authoritative DNS servers0 and full-service resolvers
(DNS servers that look at their own cache and ask them to tell you if they don't
know)1.

RA : Name resolution is possible 1.
Z:Future Reservations. Always 0.

219

As shown in the figure below, there are two types of DNS headers: packets in
the request and packets in the response.Both have the same format shown in
the table above, but the values are different.

[request]

Domain Name System (query)

Transaction ID: Ox5d30
» Flags: 0x0100 Standard query

Nrsm ot oo n -

0000 00 0d 02 d4 ec 9e 94 de 80 07 c8 c9 08 00 45 00
00160 00 3f be cl1 40 00 40 11 fa 7b a8 00 1f cO a8
0020 00 01 a4 7d 00 35 00 2b c5 do‘Sd 30 01 00 00 0
C[CR{CIO0 00 00 00 00 00 05 6Cc 6T 67 71 A2 B5 79 61 68
ClLlc6T 6T 02 63 6T 02 6a 70 00 00 1c 600 0O

[Response.] ID is copied.

Domain Name System (response)

Transaction ID: 0x5d30
» Flags: 0x8180 Standard query resporlse, No error

Nisommd st s A

4

D006 94 de 80 07 c8 c9 00 0d 02 d4 eq 9e 08 00 45 10

0010 5C 43 ee 40 00 40 11 75 28 01 co
0020 1f 00 35 a4 7d 00 48 O0Oa ‘Sd 30 31

0030 67 /1 £C 05

0040 00 1c 00 01

0050 07 65 64 67

0060 1b

A DNS packet is formed by a DNS header + data (Question section, Answer
section, Authority section, and Additional section).
The data portion also includes a variable-length portion by domain name.

Kitsune, I'm exhausted from all the exercises and
explanations! Let me take a break.

Yes, it is tiring, isn't it? I know how it feels because it was
hard for me to understand it too.

But you know, it is the basic knowledge to hack and to
defend against hacking. If you don't get over this, it's a
dream come true to get advanced knowledge. That's the
end of the story about the contradictions and shields of

securitv. What shall we talk about in E'nisode 28?

Translated at DeeplL

220

