
202

Computer Science (Episode 27)

Episode 27 (Security VI: Contraption) Packet Analysis II

 Using WireShark

 From the IT Dictionary

文

字

10

進

16

進

NUL 0 00

SOH 1 01

STX 2 02

ETX 3 03

EOT 4 04

ENQ 5 05

ACK 6 06

BEL 7 07

BS 8 08

HT 9 09

LF* 10 0a

VT 11 0b

FF* 12 0c

CR 13 0d

SO 14 0e

SI 15 0f

文

字

10

進

16

進

DLE 16 10

DC1 17 11

DC2 18 12

DC3 19 13

DC4 20 14

NAK 21 15

SYN 22 16

ETB 23 17

CAN 24 18

EM 25 19

SUB 26 1a

ESC 27 1b

FS 28 1c

GS 29 1d

RS 30 1e

US 31 1f

文

字

10

進

16

進

SP 32 20

! 33 21

" 34 22

35 23

$ 36 24

% 37 25

& 38 26

' 39 27

(40 28

) 41 29

* 42 2a

+ 43 2b

, 44 2c

- 45 2d

. 46 2e

/ 47 2f

文

字

10

進

16

進

0 48 30

1 49 31

2 50 32

3 51 33

4 52 34

5 53 35

6 54 36

7 55 37

8 56 38

9 57 39

: 58 3a

; 59 3b

< 60 3c

= 61 3d

> 62 3e

? 63 3f

文

字

10

進

16

進

@ 64 40

A 65 41

B 66 42

C 67 43

D 68 44

E 69 45

F 70 46

G 71 47

H 72 48

I 73 49

J 74 4a

K 75 4b

L 76 4c

M 77 4d

N 78 4e

O 79 4f

文

字

10

進

16

進

P 80 50

Q 81 51

R 82 52

S 83 53

T 84 54

U 85 55

V 86 56

W 87 57

X 88 58

Y 89 59

Z 90 5a

[91 5b

¥ 92 5c

] 93 5d

^ 94 5e

_ 95 5f

文

字

10

進

16

進

` 96 60

a 97 61

b 98 62

c 99 63

d 100 64

e 101 65

f 102 66

g 103 67

h 104 68

i 105 69

j 106 6a

k 107 6b

l 108 6c

m 109 6d

n 110 6e

o 111 6f

文

字

10

進

16

進

p 112 70

q 113 71

r 114 72

s 115 73

t 116 74

u 117 75

v 118 76

w 119 77

x 120 78

y 121 79

z 122 7a

{ 123 7b

| 124 7c

} 125 7d

~ 126 7e

DEL 127 7f

Tanuki, the next step is packet analysis using WireShark.

The subject for analysis is the chat program created in episodes 6

and 7. We will use Wireshark to analyze the packets during

communication between the chat in the server configuration and

the chat in the client configuration.

The ASCII code will also be needed, so I will leave it as presented

again.

hexadecim
al

decim

al

C
haracter

203

 aspect of a packet flowing through a packet

Ethernet header IP header TCP header Part of data FCS

 14 bytes 20 bytes 20 bytes 4 bytes

 （UDP：8 bytes） trailer

 ※FCS（trailer (vehicle)）： Checks to see if packets were not corrupted during transmission.

You have studied tcpdump, so you know that when

data flows over a communication line, it is divided

into packets and sent. Here's a refresher.

A packet is made up of data, a header in the upper

application layer (e.g., HTTP), a header in the

transport layer (e.g., TCP), a header in the network

layer (e.g., IP), and a header in the individual

network layer (e.g., Ethernet).

In the figure, the following is shown.

When packets flow from PC (A) to PC (B), capturing

those packets is called packet capture, right? Also,

looking inside the captured packets is called packet

monitoring. Needless to say, seeing and analyzing the

actual packets flowing through the system is more

useful than learning from a book. But if you don't learn

how to operate and view the packet monitoring, it's like

a cat with a panda!

As I said before, WireShark is installed on "kali Linux",

so you can use it right away.

What if WireShark is not installed on anything other than "kali

Linux"? For example, what if I want to use it on CentOS7 which I

have built?

204

 ［Installing Wireshark]

 （If you are installing Openssl anew）

It is possible to install on CentOS7, but it is

quite a difficult task. It would be faster to

install "kali Linux", but just in case, here are

the steps to install it on CentOS7.

② Next, you need Openssl

 Make sure Openssl is installed on CentOS.

openssl version

 If installed, do the following just in case

yum clean all

yum list updates

yum update openssl

Dependency Installation

yum install -y zlib-devel perl-core make gcc

Download openssl-1.1.1 source

curl https://www.openssl.org/source/openssl-1.1.1.tar.gz

-o /usr/local/src/openssl-1.1.1.tar.gz

Installing openssl-1.1.1

cd /usr/local/src

tar xvzf openssl-1.1.1.tar.gz

openssl-1.1.1/

./config --prefix=/usr/local/openssl-1.1.1 shared zlib

make depend

make

make test

make install

Installation Confirmation

ls -l /usr/local/openssl-1.1.1

operation check

/usr/local/openssl-1.1.1/bin/openssl ciphers -v TLSv1.3

Return to Root's current directory.

cd ~

① First things first: Preparation

 $ su – root # become root

 # mkdir tool # Create a directory tool as root for storage

205

 Save the file as /root/tool/cmake-3.16.3.tar.gz

③Whether Openssl is already installed or a new installation, there are

 common tasks that must be performed.

 # yum install openssl-devel

 # yum install libgcrypt-devel

cd tool

defrosting

tar xvfz ./cmake-3.15.3.tar.gz

Go to the unzipped directory

cd ./cmake-3.15.3

Install required packages

yum install -y gcc gcc-c++

Create makefile in bootstrap

./bootstrap

make & make install

make

make install

confirmation

cmake --version

④ python3 is required

 # yum install python3

⑤ cmake is required

 Download Site

 https://cmake.org/download/

 The site displays the following

Why is cmake needed to install WireShark?

206

 Save the file as /root/tool/wireshark-3.2.1.tar.xz

click

cd tool

defrosting

tar xJfv ./wireshark-3.0.5.tar.xz

Create a directory for build and enter

mkdir build

cd build

Install required packages

yum install -y gcc gcc-c++ glib2-devel libgcrypt-devel flex-devel

byacc libpcap-devel qt5-qtbase-devel qt5-linguist qt5-qtmultimedia

-devel qt5-qtsvg-devel

Execution of cmake

cmake ../wireshark-3.0.5

make & install

make

make install

confirmation

tshark --version

If TShark (Wireshark) 3.0.5 is displayed, you are done.

Since WireShark is obtained from a source file, it

must be built (including compilation). For this,

cmake is necessary.

Now it's time to download and install WireShark.

⑥ Installing WireShark

 Download Site

 https://www.wireshark.org/download.html

207

Kitsune, I will explain the necessary operations for packet

analysis, but you should study the various operations of

WireShark by yourself by referring to the Internet or books.

As I have said before, the purpose of this site is not to teach you

how to use the tools and applications.

Now that I can use the WireShark tool, I'll try to do some packet

analysis from the web server, as well as how to operate it. But I'll have

to start WireShark with administrator privileges (root) as shown below

to get the complete packets for analysis.

Clicking on the WireShark icon won't give me administrator privileges!

I can read it! I see, you start WireShark after it is Rooted at the terminal.

So eth0 is the device name of the NIC. That's what you specify. It looks

like the packet has already arrived. But it seems to be difficult if I don't

get used to the operation.

Password :

208

[~]$./cctest

ｗait

aaaaa

Your turn.: bbbbbb

Waiting!

ccccc

Your turn.: ddddd

Waiting!

quit

Your turn.: quit

Waiting!

[~]$./sctest

Go ahead!

Your turn.: aaaaa

Waiting!

bbbbbb

Your turn.: ccccc

Waiting!

ddddd

Your turn.: quit

Waiting!

quit

 ［Execution state of the chat program for packet analysis.]

Roger, if you have the ability to read a book, you can understand how to operate it.

In order to analyze packets using WireShark, it is better to use a

demo model for easy-to-understand testing, where the contents of

the transmission and reception are known in advance. So, we will

use the chat programs created in episodes 6 and 7. Using the server

chat program and the client chat program is the best choice since

the content of the transmission is known in advance and they are

intercommunicating with each other.

First, let's analyze the packets using the chat program. The chat

program is running on a single PC.

server process

IP: 192.168.0.31

client process

IP: 192.168.0.31

209

 ［Basic Packet Analysis with Wireshark]

 The above is divided into three parts: [a], [b], and [c].

 ［a］：One line represents one packet.

 Order in which packets are sent:Elapsed time (initially 0):Sending IP Address receiving IP address

 (Server process) (Client process)

 ●

 Protocol used: Frame length (bytes): Sending port (50000) to receiving port (54896)

 Communication Control Flags

PSH (push): Prepare to send

 ACK: Response confirmation

 ：

 ［ｂ］：Contents of a single packet

a

b

c

The packet analysis by WireShark is shown below.

It is important to understand the meaning of the "a,"

"b," and "c" parts. If you can't do that, hacking is a

dream come true. Please try your best.

210

 From top to bottom.

・Ethernet header

・IPｖ4 header

・TCP header

 ・Order of transmitted data. The entire packet (Ethernet frame) is 72 bytes.

 ［c］：A specific hexadecimal and ASCII representation of the contents of a single packet

 aspect of a packet flowing through a packet

Ethernet header IP header TCP header TCP Option Part of data

 14 byte 20 byte 20 byte 4×3 byte 6 byte

Tanuki, you can't learn analysis just by looking at

what is displayed. I will give you the following

exercises to try. Practice is an important part of

learning. However, repeating the same thing over

and over again to avoid mistakes is a waste of

time. So studying for the exam is doing a waste of

time. It makes sense if you want to become a

bureaucrat who can blame mistakes. However, it

is important to practice a few times not to prevent

mistakes, but to deepen understanding. If you

deny this, you're not learning.

I understand. I've always wanted to try it. But I'd also like to

check the answers, so please provide me with the answers.

211

［Exercise 1] Write the corresponding hexadecimal number from [c] in the following header.

 Ethernet header （１４byte）

Destination MAC address（6 byte） Sender MAC address（6 byte） Type（2 byte）

 IP header（２０byte）

version (4) header length (4) DSCP(6) ECN（2） packet length (16)

identifier (16) O(1) F(1) M(1) fragment offset (13)

live time (8) protocol number (8) header checksum (16)

starting IP address 192.168.0.31(32 ﾋﾞｯﾄ)

end IP address 192.168.0.31(32 ﾋﾞｯﾄ)

 TCP header（２０byte）

starting port number 50000(16 bit) endpoint port number 54896(16 bit)

sequence number (32 bit)

acknowledgment number (32 bit)

data offset (4) reserved bit (3) control flag (9) window size (16)

checksum (16 bit) urgent pointer (16 bit)

 TCP option（１２byte）

 option

 DATA（６byte）

a a a a a nl (LF) new line

212

［Answers to Exercise 1]

 Ethernet header （１４byte）

Destination MAC address（6 byte） Sender MAC address（6 byte） Type（2 byte）

00 00 00 00 00 00 00 00 00 00 00 00 08 00

 IP header（２０byte）

version (4) header length (4) DSCP(6) ECN（2） packet length (16)

4 5 0 0 00 3a

identifier (16) O(1) F(1) M(1) fragment offset (13)

F5 63 4 0 00

live time (8) protocol number (8) header checksum (16)

40 06 c3 cb

starting IP address 192.168.0.31(32 ﾋﾞｯﾄ)

C0 a8 00 1f

end IP address 192.168.0.31(32 ﾋﾞｯﾄ)

C0 a8 00 1f

 TCP header（２０byte）

starting port number 50000(16 bit) endpoint port number 54896(16 bit)

C3 50 D6 70

sequence number (32 bit)

46 bf d2 35

acknowledgment number (32 bit)

C2 1f 75 2a

data offset (4) reserved bit (3) control flag (9) window size (16)

8 0 1 8 01 56

checksum (16 bit) urgent pointer (16 bit)

81 bb 00 00

 TCP option（１２byte）

 option

01 01 08 0a 00 19 75 0a 00 19 27 56

 DATA（６byte）

a a a a a nl (LF) new line

61 61 61 61 61 0a

213

 ［Detailed explanations for packet analysis.]

Ethernet Header Terms

 Type: If the upper layer is IP, 0x0800. For ARP (Address Resolution Protocol: MAC address query from

 broadcast address such as ping, dns, nslookup, etc.), 0x0806.

IP Header Terms

 Version: 4 for IPv4.

 Header length: 4 byte units, so 4 x ? = 20 (bytes) from ? = 5, which is 5.

 DSCP、ECＮ：Indicates the state of packet congestion on the transmission line.

 Packet Length: The length (in bytes) of an IP packet. The following calculation formula is used.

 Packet length = Length of entire packet (72 bytes) - Ethernet header (14 bytes) = 58 = x003a

 Identifier: Increase by 1 for each packet sent out.

 Flags: O (unused: 0), F (divisible: 0, not divisible: 1), M (last fragment (not fragmented): 0, fragment

 in progress: 1)

 Fragment Offset: Fragmentation (packet splitting) occurs when a single IP packet exceeds 1500

 bytes. Indicates where the fragmented data will be in the original packet; 0x4000

 indicates that fragmentation is not possible and no fragmentation has occurred.

 Survival Period: Indicates the number of routers an IP packet can pass through. Each time it passes

 through a router, the number is decreased by 1.

 Protocol number: Indicates the upper protocol: 6 for TCP, 17 for UDP, 1 for ICMP, and 4 for IP.

 Header checksum: guarantees that the IP header is not corrupted. 1's complement of the IP header.

TCP Header Terms

 Sequence number: Order control, restoring the sent TCP packets in the correct order.

 Acknowledgement number: Sequence number + data size received

 Data offset: TCP header length (5 for 20 bytes). In this case, 32 bytes including the TCP option, so 8

 is entered as 32/4.

 Reserved bits: 3 bits reserved for future expansion. Currently unused and set to 0.

 Control flags: 1-bit flags (9 bits in total) for connection-related control (NS, CWR, ECE, URG, ACK,

 PSH, RST, SYN, FIN).

 Window size: Notifies the receiver of the size of the data to be sent and prepares the receive buffer.

 In this case, 0x0156 is used to notify the transmission of 342 (decimal) bytes of data.

 Checksum: Ensures that TCP packets are not corrupted.

 Urgent pointer: Indicates the location and number of bytes of data that must be processed urgently.

※Connectionless UDP does not include the sequence number, acknowledgment number, or control flags

 required for a connection.

214

Kitsune, the packets sent and received are flying in

and out at a dizzying rate, is there any way to save

them to a file and analyze them carefully?

Yes, there is.

If you execute the following command with Root

privileges, the file (cap1) will be saved. However, when

you open the cap1 file, you must start WireShark and

open it as a file for WireShark. At this time, you do not

need to have Root privileges to open the file.

]# tshark -i eth0 –w /home/cap1

(Note) The cap1 file created in /home/ does not have access rights, so grant access

 rights as follows.

]# chmod 777 /home/cap1

I understand that [Detailed Explanation for Packet Analysis] is an

important term, but it's not easy to understand. Do I have to

learn this?

You don't have to memorize it, but I'd like

you to understand how it works as you do

your practice assignments.

215

Next, I should try to analyze the packets from the web server.

There is a site that provides a demo page for analysis, so let's use

that. The site is not using OpenSSL, so it is accessible via http,

not https, and the HTTP header and data portions are clearly

distinguishable. The following is the result of accessing this site

and capturing the data with WireShark. The IP address of

"www.ikeriri.ne.jp" is 163.44.9.71. The IP address of the "kali

Linux" that is capturing the packets is 192.168.0.29.

216

［Answers to Exercise 2]

［Answers to Exercise 3]

Tanuki, as [Exercise 2], start wireshark and also start a

browser. Access the "http://www.ikeriri.ne.jp/sample.html" site

from your PC. Extract the first and last lines of the http header

section from (b) of wireshark at that time.If you are asked to

look at part (c) and count the number of bytes in the http

header, will you be able to practice and answer the question?

First line：GET / HTTP/1.1

Last line：Connection: Keep-Alive

Bytes: Count them yourself!

Let's continue. Start wireshark and a browser as "Exercise 3".

Extract from (b) the line that borders the http header part and

the data part when the data is sent from the

"http://www.ikeriri.ne.jp/sample.html" site to the PC.

Also, count the number of bytes in the http header section in

(c). If you were asked to do this, would you be able to answer

the question?

boundary line：Content-Type: text/html

 or blank (¥r¥n: carriage return/line feed)

Bytes: Count them yourself!

Now, when I capture https using WireShark, I see OCSP

protocol packets. What is OCSP? It is a packet that queries

an external OCSP responder to see if the digital certificate

sent by the site you are accessing is correct. It is shown in

the next figure.

 sight

www.aaa.bbbb

CentOS7

browser

OCSP responder

Server certificate

(serial number)

 sent from site

Is the serial number on the site correct? You're right!

217

［Answers to Exercise 4] OCSP Protocol

 UDP header

 Starting port number（２byte） Endpoint port number（２byte）

 Packet length（２byte） Checksum（２byte）

［Answers to Exercise 5］UDP header

 Starting port number（２byte） Endpoint port number（２byte）

 A4 7d 00 35 (53:DNS Server)

Packet length（２byte） Checksum（２byte）

 00 2ｂ（43 byte） 60 e8

So [exercise 4].

Launch WireShark, then launch your browser and

visit the "https://www.yahoo.co.jp" site.

Answer the encryption name used in the OCSP

protocol hash algorithm displayed at that time, the

number of bytes of the issuerNameHash (issuer

name), the number of bytes of the issuerKeyHash

(issuer's public key) and the serial number.

Ｈash algorithm：ＳＨＡ－１

issuerNameHash(Publisher Name)：20 byte

issuerKeyHash(Public key of the issuer)：20 byte

serial number：16 byte

Next is the UDP protocol.

Capturing the DNS protocol using WireShark shows that

the UDP protocol is used.

So [exercise 5].

Looking at the displayed UDP header, can you fill in the

following table with the header contents in hexadecimal?

218

 ［Requests.]

 ［Response.]

［Answers to Exercise 6] DNS Header

 ［Requests.]

 01 00 (hexadecimal)

 ［Response.]

 81 80 (hexadecimal)

ＩＤ（16 bit）

Expressed in hexadecimal：

QR(1) Opcode(4) AA(1) TC(1) RD(1) RA(1) Z(1) AD(1) CD(1) RCODE(4)

 binary digits：

ＩＤ（16 bit）

Expressed in hexadecimal：

QR(1) Opcode(4) AA(1) TC(1) RD(1) RA(1) Z(1) AD(1) CD(1) RCODE(4)

 binary digits：

ＩＤ（16 bit）

Expressed in hexadecimal： 5d 30

QR(1) Opcode(4) AA(1) TC(1) RD(1) RA(1) Z(1) AD(1) CD(1) RCODE(4)

0 binary：0000 0 0 1 0 0 0 0 0000

ＩＤ（16 bit）

Expressed in hexadecimal： 5d 30

QR(1) Opcode(4) AA(1) TC(1) RD(1) RA(1) Z(1) AD(1) CD(1) RCODE(4)

1 binary ：0000 0 0 1 1 0 0 0 0000

[Exercise 6] and it's the last one.

Launch WireShark (specify DNS protocol), then launch

your browser and read the following flags from the DNS

header that appears when you access the

"https://www.yahoo.co.jp" site .

First, how many bytes are in the DNS header?

One thing to note, however.

There are two types of DNS headers, one in the request

packet and the other in the response packet. Both have the

same format shown in the table below, but the values are

different.

219

[Answers to Encore for Practice] DNS Header

［Supplemental DNS header description.]

 The DNS header (application layer) is shown in the table below.

ＩＤ（16 bit）

QR(1) Opcode(4) AA(1) TC(1) RD(1) RA(1) Z(1) AD(1) CD(1) RCODE(4)

QDCOUNT(16 bit)

ANCOUNT(16 bit)

NSCOUNT(16 bit)

ARCOUNT(16 bit)

 ID: Specified at the time of query (inquiry) and copied at the time of response (reply).

 QR：Inquiry 0, response 1.

 Opcode：Normal query 0, Notify is 4, and Update is 5.

 ：

 RD：Name resolution. Query authoritative DNS servers0 and full-service resolvers

 (DNS servers that look at their own cache and ask them to tell you if they don't

 know)1.

 RA：Name resolution is possible 1.

 Z：Future Reservations. Always 0.

 ：

Finally, an encore to the exercise.

Consider what can be read from the above table from

the bit sequence of flags, divided into [request] and

[response].

[request]：QR=0 indicates a query.Opcode=0 indicates a normal query; RD=1

 indicates a full-service resolver.

[response]：QR=1, response. From Opcode=0, normal query. From RD=1, full

 service resolver. From RA=1, it is clear that name resolution is

 possible.

I'll give you a detailed supplementary explanation

of DNS headers, see if you need it.

220

 As shown in the figure below, there are two types of DNS headers: packets in

 the request and packets in the response.Both have the same format shown in

 the table above, but the values are different.

 [request]

 ［Response.] ID is copied.

 A DNS packet is formed by a DNS header + data (Question section, Answer

 section, Authority section, and Additional section).

 The data portion also includes a variable-length portion by domain name.

 Translated at DeepL

Kitsune, I'm exhausted from all the exercises and

explanations! Let me take a break.

Yes, it is tiring, isn't it? I know how it feels because it was

hard for me to understand it too.

But you know, it is the basic knowledge to hack and to

defend against hacking. If you don't get over this, it's a

dream come true to get advanced knowledge. That's the

end of the story about the contradictions and shields of

security. What shall we talk about in Episode 28?

