
231

Computer Science (Episode 30)

Episode 30 (Malware Analysis II)

 Execution (EXE) file parsing

Kitsune, why do you have to analyze a

regular executable file in order to do

malware analysis?

Tanuki, there is a wide variety of malware. It is impossible to cover all of

them here, and I am not going to give the names of the viruses or explain

how they work.

The malware I am interested in are file-infection viruses.

It is the CIH (also known as Chernobyl) virus. It rewrites part of the

applications you use in your daily life, invoking the CIH virus program

every time you launch the application, and then, with a nonchalant face,

leaks your personal information to the outside world while collecting

information behind the scenes.

The infected application can be launched and used normally, so the user is

unaware of the infection. In addition, the code that invokes the CIH virus is

written to the application's free space, so the application's file size does

not increase. Furthermore, the CIH virus program is invoked before the

application is launched.

Furthermore, the code that the CIH virus writes to the application is in

assembler language, making it ideal for analysis using Ghidra.

Isn't the CIH virus primarily targeting Windows?

232

Virtual address PE Format ELF Format

 00400000

 00419363

notepad.exe(windows executable file) emfd.exe(Linux executable file)

DOS header

DOS stub

PE header

 section table

 .text

 .rdata

 .data

 :

ELF header

program header table

 .dss

 .data

 :

 .rodata

section header table

 ：

Exactly. That is why it is essential to first understand the specifications of

executable files in order to find CIH viruses.

Let's take the case of notepad, which comes standard with Windows.

Windows executables such as notepad.exe are in PE (Portable Executable)

format.

However, the emfd.exe used this time is an executable file on Linux, so it is in

ELF (Executable and Linkable Format) format.

There are some differences between the two, but the basic parts are similar.

Since emfd.exe is the simplest program with only input/output, I will explain it

here.

The differences between PE and ELF structures are illustrated below.

signature

file header

 optional header

 virtual address

 00400000

 00602020

I can see the

difference

between the two

format formats

when I compare

them on Ghidra!

233

Next, a note on parsing C executables.

The C language is first executed from the main() function. This is the

same for PE and ELF files. However, the name of the main() function in

the ELF file is displayed as "main", but the main() function in the PE

(Portable Executable) file, which is a Windows executable file, is not

named "main".

This causes the problem of having to find a function that corresponds to

the main function. This is because the analysis will not proceed unless the

main() function is found. We can't just blindly analyze. The following

figures show examples of main() functions in PE and ELF files.

So the "FUN_0040100

0" function is the

main() function in the

PE file? That's a tough

one to find.

Furthermore, I guess it

is not always named

"FUN_00401000"!

234

The ELF file shows the name of the

main() function as it is, so this is

easy.

235

 Translated at DeepL

In "Episode 31," it's

how you actually read

the stored passwords.

So, shall we illustrate how the CIH virus is transmitted?

In an ELF-formatted EXE file made in C, there is an entry() function

and a main() function. The entry() function is executed first, so it

writes the location (address) of the script containing the virus in its

CALL instruction, and when it returns, it executes the main()

function with a nonchalant expression.

CIH virus

already inserted

I see, there is always a place

in an app that is not being

used, so if you build a virus

there, it won't increase the

app's capacity. Do you run it

first and then go back?

Write the address

Return to

 post- execution entry

I'm pretty sure the entry()

function is the function

that initializes the app.

Windows apps do not

have an entry function,

and the WinMain()

function does both?

Normal application execution

