Computer Science (Episode 30)

Episode 30 (Malware Analysis II)

Execution (EXE) file parsing

Kitsune, why do you have to analyze a
regular executable file in order to do
malware analysis?

Tanuki, there is a wide variety of malware. It is impossible to cover all of
them here, and | am not going to give the names of the viruses or explain
how they work.

The malware | am interested in are file—infection viruses.

It is the CIH (also known as Chernobyl) virus. It rewrites part of the
applications you use in your daily life, invoking the CIH virus program
every time you launch the application, and then, with a nonchalant face,
leaks your personal information to the outside world while collecting
information behind the scenes.

The infected application can be launched and used normally, so the user is
unaware of the infection. In addition, the code that invokes the CIH virus is
written to the application’s free space, so the application’s file size does
not increase. Furthermore, the CIH virus program is invoked before the
application is launched.

Furthermore, the code that the CIH virus writes to the application is in
assembler language, making it ideal for analysis using Ghidra.

Isn’t the CIH virus primarily targeting WindOD

231

Virtual address

Exactly. That is why it is essential to first understand the specifications of

executable files in order to find CIH viruses.
Let’s take the case of notepad, which comes standard with Windows.
Windows executables such as notepad.exe are in PE (Portable Executable)

format.

However, the emfd.exe used this time is an executable file on Linux, so it is in

ELF (Executable and Linkable Format) format.

There are some differences between the two, but the basic parts are similar.
Since emfd.exe is the simplest program with only input,/output, | will explain it

here.

PE Format

00400000

DOS header

DOS stub

PE head

er sighature

file header

optional header

section table

. text

.rdata

.data

00419363

notepad. exe (wind

s executable file)

@fogram Trees

id & B X

v (¥ notepad.exe
Headers
text
.rdata
.data
.pdata
.rsrc
.reloc
Debug Data

_legmmTwex |

The differences between PE and ELF structures are illustrated below.

virtual address
00400000

00602020

difference

ELF Format

ELF header

program header table

.dss

.data

.rodata

section header table

| can see the

between the two
format formats
when | compare
them on Ghidra!

emfd. exe (Lin

executable file)

'Program Trees X
id & ™
‘”V-E? emfd.exe ~A
.bss
E¥ .data
.got.plt
.got
[F] .dynamic
e | >

—l Program Tree

v

232

Next, a note on parsing C executables.

~__0 The C language is first executed from the main() function. This is the
same for PE and ELF files. However, the name of the main() function in
d the ELF file is displayed as "main”, but the main() function in the PE
(Portable Executable) file, which is a Windows executable file, is not
named “main”.
This causes the problem of having to find a function that corresponds to
the main function. This is because the analysis will not proceed unless the
main() function is found. We can’t just blindly analyze. The following
figures show examples of main() functions in PE and ELF files.
So the "FUN__0040100
0" function is the
Symbol Tree = e main() function in the
= FID_contlict:_ A PE file? That's a tough
FUN_004

one to find.
Furthermore, | guess it
is not always named
"FUN__00401000"!

Filter:

00401003
00401009
00401010
00401017
0040101e

00401020
00401023
00401026

undefined4
undefinedl
undefinedl

undefinedl

Stack[-0xc]:4 local c
Stack[-0x1c]:1 local_lc
Stack[-0x60]:1 local_60

Stack[-0x164... loc

Cum_oomlooo)

304010

00401008k
8lec6001...
c745fc00...
c745f80a...
c745fc00...

eb 09

8b 45 fc
83c00c
89 45 fc

PUSH EBP

MOV EBP, ESP

SuB ESP, 0x160

MoV dword ptr [EEP+ local 8],
MoV dword ptr [EEP+ local _c],
MoV dword ptr [EBF + local_8], R
JMP LAB_00401029

LAB 00401020

MoV EAX, dword ptr [EBF + local
ADD EAX, Oxc
MoV dword ptr [EEP+ local_8],

Decompile: FUN % | Y| [

16
1 7
18
19
20
21

undefing

{

e

(4 FUN_00401000(void)

HRESULT prarl;

BOOLZVar2;

eflar local 164 [260] ;
_STARTUPINFOA local_60;
_PROCESS_INFORMATION local 1c;
undefined4 local_c;

undefined **local_8;

local_c=10;
local_8=&PTR s_hello.exe_00418000;
while ((*local 8!= (undefined *)0x0 && (HV:
1 =FUN_004010e0((int)local 8, local 164),
Varl 1=0)
1A
loca T__:EI =loca 1__
}
BVar2=PathFileExistsA(local_164);
if (BVar2==1){
GetStartupInfoA(&local 80);
CreateProcessA(local 164, (LPSTR)0x0, (LP,
CURITY_ATTRIBUTES)Ox0, (LPSECURITY_ATTRI
TES)0x0, 0, 0x10
, (LPVOID)0x0, (LPCSTR)0x0, &local ¢
,&local lc);

8+ 3;

| ¢ pecompile: FUN_00401000 * [] Bytes

LAB_00401029

233

The ELF file shows the name of the
main() function as it is, so this is
easy.

[Bspecompite.. & | L | @

o= W N -
-~

lms: ™ X

» ¥ frame dummyla

(

~

(¢0]

fcal_c=open("data",0);
read(local c,local _18,5);
write(l,local 18,5);
close(local c);

return;

(o]

}

LAB_00400608
00400608 Q73 ff ff... JMP regifter_tm_cl

S EE RS SRR R ES SRS R R

FLU
B AR A K A AR R A ARk

undefined _ sftdcall main(void) || «'C J
undefined AL:1 <RETURN> Hi - s
s Decompile: main x [] Bytes: ef
undefined4 Stack[£Oxc]:4 local_c lcf R WERCH)
I undefinedl Stafk[-0x18]:1 local_18

T 0040060@ PUSH RBP

0040060e 4889e5 MoV RBF, RSP

00400611 4883 ec 10 SuB RSP, 0x10

00400615 be 0000 00... MoV ESI, 0x0

0040061a bf 1007 40... MOV EDI=>DAT_00400710, DAT_00400710

0040061f b8 00 00 0O0... Mov EAX, Ox0

00400624 e8e7 fe ff ... CALL <EXTERNAL=: :open

00400629 89 45 fc MOV dword ptr [REP + local_c], EAX

0040062c 48 8d 4d fO LEA RCX=>local 18, [REF + -0x10] 234
< ' — T

int

undefined4
undefined4
undefinedl
undefined4
undefined4

uchar *
uint

LES R E R 2]

EAX: 4
Stack [
Stack[-
Stack [
Stack|-

gk [

00401437 e8a30200...
0040143c e97a fe ff...

R R R R R R R R R R R R R R R R R R R

<RETURN=>

-0x8] :4 Tlocal_8

0x14]:4 local_14

-0x1d] :1 local_1d

0x24] : 4 local_24

-0x28] : 4 local_28

So, shall we illustrate how the CIH virus is transmitted?
In an ELF—formatted EXE file made in C, there is an entry() function
and a main() function. The entry() function is executed first, so it
writes the location (address) of the script containing the virus in its
CALL instruction, and when it returns, it executes the main(
function with a nonchalant expression.

int _ stdcallen

LAB_004012bb

: Write

+

the address

—®Ecl figq

¥Libraries:

<RETURN>

Stack[0x4]:4 param_1
Stack[0x8]:4 param_2

find_pe_

section@@YAPAU IMAGE

find_pe_section

00401441 55 PUSH =BF

00401442 8h ec MoV EBP, ESP

00401444 8h 45 08 MOV E4x, dword ptf [EBP+ faram_J M
00401447 56 PUSH EST

Visual Studio 2017 Releasf, Visy:
R R S R S S S RS SRS RS SRR R R SRR R R
_IMAGE_SECTION_ HEADER *
_IMAGE_SECTION... EAX:4

_ cdecl find_jpe_sedt

SECTIPN_HEA

and the

function does both?

I’m pretty sure the entry()
function is the function
that initializes the app.

Windows apps do not
have an entry function,

WinM

| see, there is always a place

in an app that is not being
used, so if you build a virus

there, it won’t increase the
app’s capacity. Do you run it
first and then go back?

ain()

0041%4dc 7a OP 6800...

0
004124e9 0
[¢] ea 00
004124eb 00

u_zh-TW_004124dc A lses | Hex
-
] . BB|| e0 | 2d 00 54 00 57 oo&o 00 00 00 60 00 00 O
unicode u"zh-Tw" é = || afo | 60 00 00 00 00 0OYOO 00 oo 00 00 00 00 O
?? 06h = | 500 | 00 00 00 00 0Qe=6® QD 00 00 00 O
g
?? 0oh “1510 | 00 00 00 gerB0 00 00 oo 00 03MQ_00 00 O
?? ooh I 520 | 00 00 G&700 0O 00 0O 00 0O 6O 60 BQ 00 O

22

ank

004124ec 00
004124ed 00 [
004124ee 00
004124ef 00
0041240 00

Return to
post— execution entry

004124f1 00

00412412 00

00412413 00 e 00h

00412414 00 7 00h

00412415 00 22 00h

00412416 00 i 06h

00412417 00 14 00h

00412418 00 123 00h 0 0

00412419 00 ?? 00h 20 DO=20=00=42"00 10 00 10 O
004124fa 00 ?? 00h 10 00 16 00 10 00 10 00 10 0
004124fb 00 72 00h 0 00 10 00 84 00 84 00 [¢]
004124fc 00 e 00h 4 00 84 00 84 00 84 00 [¢]
004124fd 00 ?? 00h 00 10 00 10 00 81 00 [¢]
004124fe 00 22 00h 00 01 00 01 00 01 0O 0
0041241f 00 22 Q0h 7

re

00h

00 0Pf00 0O 0O 00 00 0O 00 00 0O 00 R O

czie VA oS2a Clo kg

20401000
00401001
00401003
00401009
00401010
00401017
0040101e

00401020
00401023
00401026

55 PUSH
8b ec MOV
8lec600L ... SuB
c745fc00... MoV
c745f80a... MOV
c745fc00... MOV
eb 09 JMP
LAB_00401020
8h 45 fc MOV
83¢c00c ADD
89 45 fc MOV

LAB_ 00401029

Normal application execution

EBP
EBP, ESP

ESP, 0x160

dword ptr [EEF + local_§
dword ptr [EEP + local_c
dword ptr [EEP + local_§

LAB_ 00401029

EAX,dword ptr [EBP + loc

EAX, Oxc

dword ptr [EEF + local_§

"Episode 31,” it's

how you actually read
the stored passwords.

Translated at DeeplL

235

